
www.manaraa.com

Journal of Instructional Research  |  Volume 8 | Issue 2 | 2019	 118

GRAND CANYON UNIVERSITY

EFFECTIVE ASSESSMENT FOR EARLY COURSES IN
COMPUTER SCIENCE: INSTRUMENTS OTHER THAN

OUT-OF-CLASS PROGRAMMING ASSIGNMENTS
Lydia Fritz, Grand Canyon University

INTRODUCTION
Course objectives in computer science are

often assessed with programming assignments.
Some smaller assignments are completed in
proctored settings such as the classroom or lab,
but more substantial work requires the student to
develop solutions without the constant presence of
an instructor or lab assistant. Such assignments are
known to be challenging exercises, particularly
for the beginner; syntax must be correct, software
must be properly utilized, and solutions must
be logically sound. A single mistake can cause
an entire assignment to fail. This is especially
frustrating for students at the introductory level
who have yet to develop the necessary skills to
identify the source of errors and make necessary
corrections. There is no guarantee that a working
program submission is not plagiarized and
therefore does not necessarily indicate that a
student has mastered the learning objectives
associated with the assignment (Ngo, 2016).
Conversely, an incorrect submission does not
mean the student failed to master the assignment
objectives as program failure might have any
number of root causes. This paper describes
alternate methods of assessment that provide a

more insightful measure of student mastery of
learning objectives and outlines the added benefits
of alleviating student stress and frustration while
increasing learning, confidence, and interest in
early programming classes.
NEED FOR ALTERNATE ASSESSMENT TECHNIQUES

At this university, many computing courses
are project-based. This means that even in
introductory courses, student evaluation is based
on submitted programming assignments. A
significant portion of class time is spent actively
programming with the instructor present to assist.
However, not all assignments are designed to be
completed in the classroom. Important skills are
gained in the out-of-class programming endeavor;
the student becomes self-reliant and learns to
plan solutions and resolve problems on their
own (Walker, 2004). Students are encouraged to
utilize a variety of resources such as textbooks,
reference manuals, online documentation, and
video tutorials as part of the problem-solving
process. Unfortunately, this sometimes leads to an
abuse of the very resources students are expected
to utilize. Students have the means and ability
to obtain solutions to programming assignments
from a myriad of sources, including copying the

ABSTRACT

This is an experience paper that describes methods of student assessment in introductory- and
intermediate-level computing courses. The paper explains the need for alternate methods in the evaluation
of out-of-class programming assignments and enumerates several options that have been incorporated into
freshman- and sophomore-level courses. I show how these techniques provide a more reliable assessment
of student mastery of course objectives. In addition, I describe benefits in terms of increased student
intellectual engagement and a deeper mastery of essential foundational material.

Keywords: assessment design, learning objectives, video presentation, poster presentation, CS1
assessment, student presentations

www.manaraa.com

		 119

GRAND CANYON UNIVERSITY

work of other students, paying online services
for solutions, and downloading code that is freely
available in online code sharing repositories (Ngo,
2016). The pressure to develop a working solution
by a deadline, coupled with the abundance of
information available online, creates a tempting
environment. Even the well-intentioned student
may find themselves assembling resources to
create a solution they don’t fully understand,
leaving course objectives unmet (Abraham &
Milligan, 2008). Other capable students might
become frustrated and give up on completing the
assignment altogether.
Alternate Assessment Instruments

Successful mastery of learning objectives
cannot be determined by the evaluation of a
programming assignment. It is essential that
students learn to program in early computing
courses; however, a more insightful assessment
instrument is needed to determine if learning
objectives are met. Furthermore, if the student is
motivated by this measure so that her focus is on
learning the concept, principle, idea, or technique,
and not the completion of the assignment, then
there will be less likelihood that the student will
engage in plagiarism or otherwise circumvent the
intended learning (Abraham & Milligan, 2008).

Several new assessment techniques have been
introduced in both freshman- and sophomore-level
computer science classes, including the following:

1.	 Short video production in which the student
demonstrates and explains their solution.
This assessment technique is similar to
an in-class demonstration without costing
classroom instruction hours. The student
demonstrates and explains their work,
justifies design choices, and elaborates on
difficulties. Often, a prompt is included,
directing the student to comment about
some particular aspect of their work, such
as efficiency, error-handling, or alternate
solutions. Time limitations are also provided
to keep discussions concise and on target.

2.	 Research-style poster presentation of
a particular concept. This assessment
technique requires the student to prepare a
poster elaborating on a particular concept,
often tied directly to a learning objective.

The poster allows the student to demonstrate
mastery of a concept without having to
produce a program as an artifact.

3.	 Research-style poster presentation of a
“large” project reflecting upon the major
development phases. Many computing
courses at GCU include a significant
project that spans the entire semester.
These types of projects are developed
in well-defined stages. This assessment
instrument allows the student to revisit each
stage, comment on its role in the overall
project life-cycle, and reflect on what worked
well and what could have been improved
during project development.

4.	 Essay response exams. This assessment
works well in courses that employ written
testing. For this technique—in advance
of the exam—students are given a slate
of approximately 10 questions that are
eligible for inclusion on a free-response
exam. Questions are open-ended and
require explanation (or evaluation) of some
paradigm, technique, structure, or potential
solution. Materials, such as “cheat sheets,”
are not allowed on test day, but students
are free to think about and prepare answers
to questions in advance of the exam, often
leading to a more thorough and more
targeted preparation. A small subset of the
original slate of questions is present on the
exam, allowing adequate time for thorough
responses, which are often augmented by
drawings, charts, and the like.

Observations and Benefits.
Each assessment instrument described above

is developed to directly target and measure
learning objectives. All four instruments contain
specific prompts designed to get the student to
demonstrate their knowledge of a particular course
objective, either through a verbal presentation
or written response. In all cases, the instructor
is able to measure the student’s mastery of the
objective directly.

There are additional benefits as well. All
techniques require the student to prepare an
explanation of material and to organize subject
matter. It has been shown that this type of

www.manaraa.com

Journal of Instructional Research  |  Volume 8 | Issue 2 | 2019	 120

GRAND CANYON UNIVERSITY

preparation and organization results in increased
learning over students who are studying material
only for themselves (Bargh & Schul, 1980). These
assessment techniques also provide much needed
practice with communication skills. Computer
science students must be able to communicate
technical information to a variety of audiences,
and therefore must be engaged in written and oral
presentation activities (Beaubouef, Zhang, Alkadi,
& Yang, 2011). The video and poster exercises
require an oral presentation of material. Video
presentations provide the reluctant or shy student
an opportunity to practice and deliver presentations
in a safe setting. Both the poster and the video
deliverables can alleviate the stress incurred when
a programming assignment does not succeed by
allowing the student to present their work and
outline challenges. Reducing student anxiety and
increasing comfort in the course has been shown
to be a leading predictor of success in the CS
curriculum (Wilson, 2002). Finally, all assessment
techniques described here allow the instructor to
provide useful feedback that addresses specific
points in the student’s arguments.
Summary

The integration of assessments that require the
student to communicate details of their work are
a healthy addition to the introductory computing
curriculum. Such assessments provide a reliable
means of measuring student mastery of course
objectives. Plagiarism of work is less relevant, as
students must offer explanation for all deliverables.
I have observed that students react positively to
presentation assignments and enjoy talking about
their successes and having the opportunity to
share challenges encountered. Looking forward,
research is needed to establish the benefit of
other positive effects of the described assessment
methods, including:

1.	 Improved ability to communicate within
the discipline.

2.	 Increased confidence in
professional interactions.

3.	 Increased intellectual engagement in future
academic pursuits.

4.	 The effectiveness of targeted feedback
on student.

www.manaraa.com

		 121

GRAND CANYON UNIVERSITY

References
Abraham, S., & Milligan, G. (2008). Software plagiarism in

undergraduate programming classes. Information Systems
Education Conference. Phoenix, Arizona.

Bargh, J. A., & Schul, Y. (1980). On the cognitive benefits of
teaching. Journal of Educational Psychology, 72(5), 539-604.

Beaubouef, T., Zhang, W., Alkadi, G., & Yang, K. (2011). Beyond
the computer science curriculum: Empowering students for
success. Journal of Computing Sciences in Colleges, 26(4),
21-27.

Ngo, M. N. (2016). Eliminating plagiarism in programming courses
through assessment design.

International Journal of Information and Education Technology,
6(11).873.

Walker, G. N. (2004). Experimentation in the computer
programming lab. Inroads--The SIGCSE Bulletin, 36(4). 69-72.

Wilson, B. C. (2002). A study of factors promoting success in
computer science including gender differences. Computer
Science Education, 12(1-2), 141-164.

